A Hybrid Pre-Processing Techniques for Artifacts Removal to Improve the Performance of Electroencephalogram (EEG) Features Extraction
نویسندگان
چکیده
Electroencephalogram (EEG) blend reflects the summation of the synchronous activity of thousands or millions of neurons that have parallel spatial direction. EEG Signals are extracted from Human Brain. While Extracting an EEG Signals, large amount of data with diverse categories will be collected from the human skull. To investigate and categorize the valuable information from the EEG recordings, computerized methods are required, because removing any of the components would remove too much of useful EEG signal in sequence. EEG Recordings generally not just contains electrical signals from mind, which is polluted with various artifacts. It is the combinations of unwanted mechanisms like Power Line Noise, Electrocardiogram (ECG), Electrooculogram (EOG) and Electromyogram (EMG). Signals in the EEG that are of non-cerebral origin are called artifacts. So, before analyzing the brain signals they need to be preprocessed. The focus of this paper is proposing the development of an integrated artifacts removal technique that can automatically discover and remove the artifacts in order to smooth the progress of EEG Assessment, and the hybrid pre-processing techniques is based on the joint venture of Adaptive Filtering, Wavelet Denoising and Independent Component Analysis (ICA) in order to improve the feature extraction performance of the EEG Signals. This paper converse the comparison with existing techniques, and discuss the advantages of the proposed hybrid pre-processing Technique.
منابع مشابه
A hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine
Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...
متن کاملEEG Artifact Removal System for Depression Using a Hybrid Denoising Approach
Introduction: Clinicians use several computer-aided diagnostic systems for depression to authorize their diagnosis. An electroencephalogram (EEG) may be used as an objective tool for early diagnosis of depression and controlling it from reaching a severe and permanent state. However, artifact contamination reduces the accuracy in EEG signal processing systems. Methods: This work proposes a no...
متن کاملPrediction of Epileptic Seizures in Patients with Temporal Lobe Epilepsy (TLE) based on Cepstrum analysis and AR model of EEG signal
Epilepsy is a chronic disorder of brain function caused by abnormal and excessive electrical neurons discharge in the brain. Seizures cause disturbances in consciousness that occur without prior notice, so their prediction ability, based on EEG data, can reduce stress and improve quality of life. An epileptic patient EEG data consists of five parts: Ictal, Inter-Ictal, pre-Ictal, Post-Ictal, an...
متن کاملA Hybrid Approach Based on Higher Order Spectra for Clinical Recognition of Seizure and Epilepsy Using Brain Activity
Introduction: This paper proposes a reliable and efficient technique to recognize different epilepsy states, including healthy, interictal, and ictal states, using Electroencephalogram (EEG) signals. Methods: The proposed approach consists of pre-processing, feature extraction by higher order spectra, feature normalization, feature selection by genetic algorithm and ranking method, and classif...
متن کاملA Time-Frequency approach for EEG signal segmentation
The record of human brain neural activities, namely electroencephalogram (EEG), is generally known as a non-stationary and nonlinear signal. In many applications, it is useful to divide the EEGs into segments within which the signals can be considered stationary. Combination of empirical mode decomposition (EMD) and Hilbert transform, called Hilbert-Huang transform (HHT), is a new and powerful ...
متن کامل